Probabilistic Constraint Satisfaction with Non-Gaussian Noise
نویسندگان
چکیده
We have previously reported a Bayesian algorithm for determining the coordinates of points in three dimensional space from uncertain constraints. This method is useful in the determination of biological molecular structure. It is limited, however, by the requirement that the uncertainty in the constraints be normally distributed. In this paper, we present an extension of the original algorithm that allows constraint uncertainty to be represented as a mixture of Gaussians, and thereby allows arbitrary constraint distributions. We illustrate the performance of this algorithm on a problem drawn from the domain of molecular structure determination, in which a multicomponent constraint representation produces a much more accurate solution than the old single component mechanism. The new mechanism uses mixture distributions to decompose the problem into a set of independent problems with unimodal constraint uncertainty. The results of the unimodal subproblems are periodically recombined using Bayes' law, to avoid combinatorial explosion. The new algorithm is particularly suited for parallel
منابع مشابه
Capacity Bounds and High-SNR Capacity of the Additive Exponential Noise Channel With Additive Exponential Interference
Communication in the presence of a priori known interference at the encoder has gained great interest because of its many practical applications. In this paper, additive exponential noise channel with additive exponential interference (AENC-AEI) known non-causally at the transmitter is introduced as a new variant of such communication scenarios. First, it is shown that the additive Gaussian ch...
متن کاملProbabilistic Feasibility for Nonlinear Systems with Non-Gaussian Uncertainty using RRT
For motion planning problems involving many or unbounded forms of uncertainty, it may not be possible to identify a path guaranteed to be feasible, requiring consideration of the trade-off between planner conservatism and the risk of infeasibility. Recent work developed the chance constrained rapidly-exploring random tree (CC-RRT) algorithm, a real-time planning algorithm which can efficiently ...
متن کاملProbabilistically Safe Avoidance of Dynamic Obstacles with Uncertain Motion Patterns
This paper presents a real-time path planning algorithm which can guarantee probabilistic feasibility for autonomous robots subject to process noise and an uncertain environment, including dynamic obstacles with uncertain motion patterns. The key contribution of the work is the integration of a novel method for modeling dynamic obstacles with uncertain future trajectories. The method, denoted a...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملSupervised Texture Classification Using a Probabilistic Neural Network and Constraint Satisfaction M - Neural Networks, IEEE Transactions on
In this paper, the texture classification problem is projected as a constraint satisfaction problem. The focus is on the use of a probabilistic neural network (PNN) for representing the distribution of feature vectors of each texture class in order to generate a feature-label interaction constraint. This distribution of features for each class is assumed as a Gaussian mixture model. The feature...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994